fahrzeugtechnik header

Der Philosys Label Editor war von Anfang an als ADTF Anwendung implementiert. Dies hat viele Vorteile, da die ADTF DAT-Dateien direkt gelesen werden, und auch die Daten mit ADTF Filtern nachbearbeitet werden können. Das ADTF Framework erlaubt es auch auf einfache Weise 2D/3D Oberflächen zu realisieren.

Seit einiger Zeit gibt es eine vermehrte Nachfrage von Kunden, die bisher kein ADTF verwenden, ob es nicht eine Version ohne ADTF gibt, mit der man auch andere Datenformate lesen kann. Sie wollen kein ADTF nur für das Labeling lizenzieren, da sie bisher im Hause kein ADTF einsetzen, und auch die zusätzliche Lizenzierungskosten für die EBAssist Runtime Lizenz für Kunden ohne Konzernlizenz hoch sind. 

Philosys hat aufgrund der Nachfrage schon bei der Implementierung von Version 6 erste Änderung zur Reduktion der ADTF Abhängigkeit begonnen, was gleichzeitig durch die Umstellung der internen Datendarstellung zu einer erheblichen Performance-Verbesserung geführt hat.

Nach der Freigabe von Version 6.2 wird Philosys mit Hochdruck an der Umstellung des Label Editors auf eine ADTF-freie Version arbeiten. Eine erste Version wird voraussichtlich in Q2/2018 verfügbar sein. Sie wird bezüglich Labeling die gleiche Funktionalität wie die Version 6.2 haben, wird auch DAT-Dateien lesen können, allerdings fehlt die sonstige ADTF spezifische Funktionalität wie der Filtergraph oder auch die Mixin-Schnittstelle. Kunden die diese Funktionalität benötigen können aber weiterhin die ADTF Variante nutzen. 

In späteren Versionen werden andere Dateiformate unterstützt, und eine einfache Möglichkeit der Datenvorverarbeitung über Plugins geschaffen werden.

Sprechen Sie uns bitte an wenn sie spezielle Funktionen für die ADTF-freie Funktion benötigen.

 

Der Philosys Label Editor wird bei der Entwicklung unterschiedlichster Assistenzsysteme (Advanced Driver Assistance System / ADAS) und Autonomer Systeme (AD) zur Gewinnung von Ground-Truth Daten eingesetzt. Dabei werden die Objekte in der Szene manuell und/oder automatisch markiert und mit detaillierten Attributen versehen (Annotation/Labeling). Angefangen von Fahrzeugen aller Art, Fahrbahnbegrenzungen, Verkehrszeichen, bis hin zu Fußgängern und Wildtieren wird das Ground-Truth erfasst. Das Ergebnis wird in HIL/SIL-Tests zur ADAS Validierung/Absicherung der von Fahrerassistenzsystemen erkannten Objekte, und für die Generierung von Referenzdaten für Deep Neural Networks (DNN) und deren Validierung genutzt. Dadurch dass er auf EB Assist/ADTF basiert fügt er sich nahtlos in die EB Assist/ADTF Entwicklungsumgebung für Assistenzsysteme ein.

Normal 0 21 false false false DE X-NONE X-NONE

Ende 2012 wird der neue Philosys Label Editor Version 2 erscheinen. Dieser enthält eine Vielzahl von neuen Features, die nicht nur den Prozess der Annotation beschleunigen, sondern auch neue Anwendungsgebiete erschließen.

  • Integration externer Referenzdaten
  • Interpolation
  • Geometrisches Objekt Polygon
  • Projektmodus

Die folgenden Kapitel geben eine Übersicht über die Funktionalität und Anwendung der neuen Funktionen.

Integration externer Referenzdaten

Zur Validierung komplexerer Assistenzsysteme werden neben der reinen Position des Objektes auf dem Videobild, und einfachen durch den Annotator aus dem Videobild zu bestimmender Attributen, oft auch Daten benötigt, die aus anderen Quellen als dem Videobild kommen. Dies sind neben bestimmten CAN-Daten für das eigene Fahrzeug, oft auch Daten von Sensoren, die nur in den Fahrzeugen für die Aufzeichnung verbaut werden. Dies können unter anderem z. B. objektbildende Laserscanner sein. Diese erkennen wie das zu testende Assistenzsystem ebenfalls Objekte und können eine Reihe von nützlichen Daten, wie die Entfernung zum jeweiligen Objekt, relative Geschwindigkeit, usw., bereitstellen.

Interessant sind hier die Daten die der Annotator nicht so einfach selbst bestimmen kann, wie die Entfernung zum Objekt und dessen relative Geschwindigkeit. Anstatt diese Referenzdaten alle manuell von der Laserscanner Software in die Annotationsdaten zu übernehmen, bietet es sich hier an diese Aufgabe direkt mit Hilfe des Labeleditors zu erledigen.

Notwenig ist dazu dass die Sensordaten zeitsynchron zusammen mit den Videodaten aufgezeichnet werden. Die Umwandlung der Sensordaten in das Format das der Philosys Labeleditor versteht, erfolgt dann mit Hilfe eines neu zu erstellenden Decoder-Filters, der in Filtergraph, der das Video für den Labeleditor aufbereitet, integriert wird. Die Schnittstelle des Labeleditors für externe Referenzdaten ist XML. Diese Daten sind im Prinzip genauso aufgebaut wie das Ergebnis der Annotation, die Labeldaten. Sie müssen auch wie die Labeldaten in der Strukturdatei beschrieben werden.

Wurde die Struktur der externen Referenzdaten beschrieben, und von dem Filter die gewünschten Referenzdaten in dieses Format konvertiert, dann kann der Philosys Labeleditor diese Daten im Detail im ObjectView darstellen. Wenn in den Daten auch geometrische Objekte vorhanden sind, dann werden diese auch im VideoView angezeigt. Es gibt dann einmal die Möglichkeit bestimmte in der Strukturdefinition beschriebene Datenelemente einfach in ein gerade aktives Annotationsobjekt für das aktuelle Frame zu übernehmen. Oder aber man kann einen Link zwischen Referenzobjekt und Annotationsobjekt herstellen, womit dann die entsprechenden Datenelemente für alle Frames in denen das Referenzobjekt und das Annotationsobjekt existieren, übernommen werden. Dies reduziert den Aufwand für die Übernahme erheblich. Das Feature funktioniert auch zusammen mit der Interpolation. Existieren Referenzdaten zu einem interpolierten Frame so werden die Referenzdaten verwendet, so dass die Genauigkeit der Referenzdaten erhalten bleibt.

Dieses neue Feature ist der Einstig in die 3D-Annotation für Videodaten mit dem Philosys Labeleditor. Dabei kann so wie bisher das jeweilige Objekt vom Annotator auf dem Bild markiert, zusätzlich können aber noch die Entfernung und andere relevante Daten mit Hilfe der Referenzdaten automatisch gesetzt werden.

Durch die offene Schnittstelle kann der Kunde den nötigen Filter für die Wandlung der Referenzdaten in XML selbst implementieren. Er kann aber auch die Erfahrung von Philosys nutzen und den Decoder-Filter von Philosys erstellen lassen.

Interpolation

Das Annotieren ist ein zeitaufwendiger Prozess. Der Zeitaufwand pro Videominute kann je nach Komplexität mehr als das Hundertfache der Videolaufzeit betragen. Durch das Feature vorhandene Daten jeweils in das nächste Bild zu übernehmen, und die Position geometrischer Objekte dabei auch noch zu Extrapolieren, beschleunigt schon der bisherige Philosys Label Editor das Annotieren gegenüber herkömmlichen Verfahren erheblich.

Durch das neue Feature Interpolation wird die Annotationszeit jetzt in Fällen, wo Objekte sich über viele Frames hinweg kaum in ihrer Position verändern, nochmal deutlich verkürzt. Man markiert wie gewohnt am Anfang der Sichtbarkeit das Objekt auf dem Videobild mit einem beliebigen geometrischen Objekt, und setzt dieses über das per rechten Mausklick erscheinende Kontextmenü als Startbild für die Interpolation. Dann geht man zu dem Bild, an dem man das Objekt normalerweise zuletzt markieren würde, markiert dieses und setzt dieses als Endbild für die Interpolation. Jetzt wird für alle Bilder zwischen Start- und Endbild das geometrische Objekt interpoliert. Die anderen Attribute werden automatisch vom Zustand im Startbild übernommen. Gibt es im interpolierten Bereich eine Abweichung, so kann man an der entsprechenden Position einfach durch anklicken und Repositionierung des interpolierten geometrischen Objektes einen neuen Stützpunkt erzeugen. Die Interpolation wird dann automatisch vor und hinter dem Stützpunkt neu berechnet. Idealerweise setzt man einen neuen Stützpunkt dort wo die Abweichung am größten ist. In vielen Fällen reichen dann wenige Stützpunkte für eine hinreichend genaue Übereinstimmung aus.

Derzeit wird linear interpoliert, das kann aber erweitert werden. Denkbar ist auch eine zukünftige Erweiterung mit einem Tracker.

Als Nebeneffekt reduziert sich auch der Hauptspeicherbedarf bei Szenen mit langer Objektsichtbarkeit deutlich. Natürlich werden zur Gewährleistung der Kompatibilität in der Toolkette wie bisher die Daten für alle Bilder geschrieben.

Geometrisches Objekt Polygon

Um auch unregelmäßige Objekte effizient markieren zu können, wird der Philosys Label Editor um das neue geometrische Objekt Polygon erweitert. Das Polygon wird wie die anderen geometrischen Objekte am einfachsten mit der Maus erstellt. Es gibt dabei die Möglichkeit sowohl einen offenen Linienzug oder ein geschlossenes Polygon zu erzeugen. Der Typ kann auch nachträglich geändert werden.

Wie gewohnt kann man das Polygon über das mit der rechten Maustaste erscheinende Kontextmenü in der in der Struktur-XML vordefinierten Form an der Mausposition erzeugen. Danach kann man durch Neupositionierung der Maus und der linken Maustaste weitere Linien an ein offenes Polygon anhängen. Man kann auf Linien weitere Eckpunkte einfügen und natürlich Punkte, Linien und das gesamte Polygon verschieben. Natürlich funktioniert mit dem Polygon auch die hilfreiche Extrapolation beim automatischen Übertrag von einem Bild zum Nächsten.

Mit dem Polygon kann man nicht nur unregelmäßige Objekte markieren, sondern mit seiner offenen Form auch als Linienzug nutzen. Damit ist es z. B. auch möglich Spuren genauer und einfacher zu markieren.

Projektmodus

Der Projektmodus erlaubt es die für die Annotation nötigen Dateien mit einem Befehl zu laden. Dazu packt man den Filtergraph, die Strukturdatei, die DAT-Datei und die Annotationsdatei in ein Verzeichnis. Die Generierung des Inhalts kann dann durch ein entsprechendes Szenenmanagement-system geschehen.

Damit ist es jetzt einfach möglich ohne komplizierte Namenstransformationen mit mehreren Kameras aufgezeichnete Szenen für verschiedene Projekte individuell zu annotieren. Zu dem erleichtert es die Arbeit der Annotatoren und vermeidet fehlerhafte Namen beim Abspeichern der Daten.

 

Der Philosys Label Editor wird bei der Entwicklung unterschiedlichster Assistenzsysteme zur Gewinnung von Ground-Truth-Daten eingesetzt. Dabei werden die verschiedensten Objekte markiert und mit detaillierten Attributen versehen. Angefangen von Fahrzeugen aller Art, Fahrbahnbegrenzungen, Verkehrszeichen, bis hin zu Fußgängern und Wildtieren. Die erfassten Daten werden anschließend zur Verifizierung der von Assistenzsystemen erkannten Objekte verwendet.